-16x^2-320x+1584=0

Simple and best practice solution for -16x^2-320x+1584=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16x^2-320x+1584=0 equation:



-16x^2-320x+1584=0
a = -16; b = -320; c = +1584;
Δ = b2-4ac
Δ = -3202-4·(-16)·1584
Δ = 203776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{203776}=\sqrt{1024*199}=\sqrt{1024}*\sqrt{199}=32\sqrt{199}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-320)-32\sqrt{199}}{2*-16}=\frac{320-32\sqrt{199}}{-32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-320)+32\sqrt{199}}{2*-16}=\frac{320+32\sqrt{199}}{-32} $

See similar equations:

| 6=8/5u | | (x+8)/(5x+1)=0 | | 3x-5=8x+7 | | 6-3x=6x-10x-8 | | 6x+5x+6=107 | | 89x-5=32 | | 2x+17=x+10 | | x/8-x/2=6+6x/16 | | 8^(x+4)=16 | | 1/4x=68 | | R/3r+1=2/3 | | 5x-1-2=3x | | 3/m+4=9/14 | | 4^2x=28 | | 2x+11=5-1 | | 6/45=2z+10/15 | | h(-2)=9(-2)–4(-2)2 | | 9m-22=4m+18 | | 2x-12+3x+25= | | 98=7x+4x | | (n+5)/(-12)=-1 | | -4h+17=2h+29 | | P(x)=4x+5 | | 2z+7=3z | | 3x+7=5-11x | | 31+8x=4(5x+2)-1 | | 5/6x=5/6(570) | | 3(2x-2)=6(-x+3) | | x+3x=8+13 | | 18p+1=11+8p | | 2y(1-2y)=0 | | x^2−2x=0 |

Equations solver categories